г. Москва

Сретенский бульвар, д. 6

стр. 1, офис 4

8-905-014-0095

sapropel-nn@mail.ru

1.2 Основные физико-механические свойства карьерных и намывных грунтов

Эффективность намыва и качество возводимых намывных сооружений в наибольшей степени зависят от характеристик грунта.

В гидромеханизированном процессе намыва необходимо рассматривать технологически взаимосвязанный комплекс работ:

В зависимости от вида технологического процесса необходимо рассматривать соответственно и физико-механические свойства грунтов (табл. 1.1) [54].

Таблица 1.1

Физико-механические свойства грунтов

Технологический процесс Свойства грунтов, влияющие на технологический процесс
1.Подводная разработка грунта ·   гранулометрический состав;

·   плотность;

·   удельное сцепление;

·   угол внутреннего трения;

·   пластичность;

·   прилипаемость;

·   форма частиц;

·   окатанность;

·   засоренность инородными телами (корнями растений, валунами и т.д.)

2.     Гидротранспортировка грунта ·   гранулометрический состав;

·   плотность;

·   гидравлическая крупность;

·   форма частиц;

·   окатанность;

·   измельчаемость при гидравлическом транспортировании;

·   абразивность

3.    Намыв грунтовых сооружений и укладка грунта ·   гранулометрический состав;

·   плотность;

·   водоотдача;

·   водоудерживающая способность;

·   гидравлическая крупность;

·   водопроницаемость;

·   угол внутреннего трения;

·   удельное сцепление;

·   угол откоса при намыве;

·   набухание

Под гранулометрическим составом грунта понимается процентное содержание по массе частиц грунта различной крупности — фракционности.

Фракция грунта — это группа частиц (зерен) грунта, близких по размерам и свойствам.

Наиболее распространена классификация грунтов по гранулометрическому составу, в которой учитываются следующие четыре основные фракции, входящие в состав большинства разрабатываемых грунтов (табл. 1.2).

Таблица 1.2

Фракции грунта

Фракции Размеры частиц, мм
Гравийная крупнее 2
Песчаная от 2 до 0,05
Пылевая от 0,05 до 0,005
Глинистая менее 0,005

Размеры выделяемых фракций зависят от состава и назначения грунта.

При определении гранулометрического состава грунтов, используемых для намыва земляных сооружений, учитываются следующие фракции (табл. 1.3) [55]. 

Таблица 1.3

Фракции грунта, учитывающиеся при определении гранулометрического состава грунтов для намыва земляных сооружений

Грунт Фракции, мм
Глинистые частицы Менее 0,005
Пыль:

– мелкая

– крупная

0,005–0,01
0,01–0,05
Песчаные частицы:

– тонкие (пылеватые)

– мелкие

– средней крупности

– крупные

 

0,05–0,1

0,1–0,25

0,25–0,5

0,5–1; 1–2

Гравийные зерна

– мелкие

– средние

– крупные

 

2–5

5–10

10–20

Галька:

– мелкая

– средняя

– крупная

– очень крупная

 

20–40

40–60

60–80; 80–100

100–150; 150–200

 

Гранулометрический состав грунта определяют путем анализа каждой из проб грунта.

Средневзвешенный размер (диаметр) частиц грунта dср по отдельной скважине или по всему карьерному полю определяют:

dср= (d1Bd2B+…+ dnBn)/100,

где d1, d2, … dn — среднеарифметическое значение диаметра частиц грунта по фракциям, мм; В1, В2, … Вn — средневзвешенное содержание фракций грунта, %.

Плотность грунта ρ представляет собой отношение массы грунта к занимаемому объему, г/см3, кг/м3, т/м3 (табл. 1.4).

Плотность грунта непостоянна и зависит от условий естественного залегания (влажность, количество воды в порах и т. д.), так как включает отношение общей массы грунта mгр, включая массу воды в его порах, в естественном состоянии к занимаемому этим грунтом объему Vгр

ρ = mгр/Vгр.

Плотность сухого грунта ρ — это отношение массы сухого грунта mтв (исключая массу воды в порах) к занимаемому этим грунтом объему Vгр (включая имеющиеся в этом грунте поры), или масса твердой части грунта в единице его объема ненарушенной структуры:

ρd = mтв/Vгр; ρd = ρ/(1+0,01W),

где W — природная влажность грунта, %.

Плотность частиц грунта ρS (табл. 1.5) — это отношение массы сухого грунта mтв (исключая массу воды в его порах) к объему твердой части этого грунта Vтв

ρS mтв/Vтв. 

Таблица 1.4

Среднее значение плотности грунтов в естественном состоянии

Грунт Плотность ρ, кг/м3
Грунт растительного слоя 800–1200
Торф 800–1200
Чернозем 1200–1300
Ил речной 1800
Песок:

мокрый

сухой без примесей

с примесью частиц гальки, гравия до 10%

то же, более 10%

бархатистый и дюнный

 

1950

1600

1650

1700

1600

Гравий сухой 1800
Гравий мокрый 2000
Галечно-гравийно-песчаные грунты при размере частиц, мм:

до 80

свыше 80

свыше 80 с содержанием валунов до 10%

то же, до 30%

то же, до 70%

 

1750

1950

1950

2000

2300

Валунный грунт (содержание частиц крупнее 200 мм более 50%) 2500
Щебень при размере частиц, мм:

до 40

до 150

 

1750

1950

Пески, супески и суглинки при пористости:

более 0,5% и содержании частиц крупнее 2 мм до 10%

до 0,5% глины при влажности более 0,5% и содержании частиц крупнее 2 мм до 10%

 

1600

1800

Глины при влажности до 0,5% и содержании частиц крупнее 2 мм до 10% 1850
Пески, супеси, суглинки и глины при:

влажности и пористости до 0,5% и содержании частиц крупнее 2 мм: до 35%, до 65%, более 65%

пористости до 0,5% и содержании частиц крупнее 2 мм:

до 35%, до 65%, более 65%

 

1800, 1900, 1950

 

2000, 2100, 2300

Супесь:

пластичная без примесей

твердая без примесей, а также пластичная и твердая с примесью щебня, гальки до 10%

пластичная и твердая с примесью щебня, гальки более 10%

 

 

1650

1650

1850

Суглинок:

мягкопластичный без примесей

то же, с примесью частиц щебня и гравия до 10% и тугопластичный без примесей

мягкопластичный с примесью гальки более 10%

тяжелый

 

1700

1750

1750

1900

Глина:

мягко- и тугопластичная без примесей

то же, с примесью гальки и гравия до 10%

то же, более 10%

полутвердая, твердая

плотная, вязкая

 

1800

1750

1900

1950

2100

Лёсс:

мягкопластичный

тугопластичный, твердый

 

1600

1800

Таблица 1.5

Значение плотности частиц песчано-глинистых грунтов

Грунт Плотность ρS, кг/м3
Песок 2,66
Супесь 2,70
Суглинок 2,71
Глина 2,74

 

Плотность частиц грунта ρS выражается через плотность грунта в естественном состоянии ρ и коэффициент пористости е:

ρS = ρ/(1–е).

Пористость грунта n — отношение объема пор (пустот) Vп в грунте к общему объему грунта Vгр, %:

n = (Vп / Vгр)100%,

n = (1 – ρd S)100%.

Пористость зависит от гранулометрического состава грунта, формы частиц и плотности их сложения (табл. 1.6). Чем больше пористость и рыхлость грунта, тем легче он поддается гидравлическому размыву.

Таблица 1.6

Значение пористости для некоторых грунтов

Грунт Пористость грунта n, %
Глины 35–50
То же, ленточные 47–52
То же, коренные, пластичные

(юрские, майкопские, сарматские)

52–56
Суглинки:

лёссовидные

моренные

покровные

 

42–47

25–26

28–40

Супески 25–30
Пески 30–45
Ил 60–90

 

Коэффициент пористости грунта е — отношение объемов пор в грунте Vп к объему твердой фазы грунта Vтв, %:

e = Vп /Vтв = (ρS d) – 1,

e = n/(1 – n).

Коэффициент пористости e характеризует плотность укладки зерен грунта (чем меньше е, тем плотнее грунт). В зависимости от коэффициента пористости е песчаные грунты делят по плотности сложения на плотные, средней плотности и рыхлые (табл. 1.7).

Таблица 1.7

Классификация песков по пористости

Пески Коэффициент пористости, е
Плотные Средней

плотности

Рыхлые
Гравелистые крупные

и средней крупности

 

Менее 0,55

 

0,55–0,7

 

Более 0,7

Мелкие Менее 0,6 0,6–0,75 Более 0,75
Пылеватые Менее 0,6 0,6–0,8 Более 0,8

 

Гидравлическая крупность частиц грунта ω, см/с — скорость падения частиц грунта в спокойной воде (табл. 1.8), которая зависит от формы, размеров и плотности частиц грунта, вязкости и плотности среды.

Гидравлическая крупность частиц грунта используется при расчетах процессов всасывания, осаждения, гидравлической классификации и др.

При гидравлических расчетах процессов гидромеханизации учитывают усредненную гидравлическую крупность стесненного падения частиц грунта различной крупности, равную среднеарифметическому значению:

ωi = (ω+ ω2)/2

или среднегеометрическому значению гидравлической крупности отдельных фракций (при числе фракций i):

среднегеометрическое значение гидравлической крупности отдельных фракций

Таблица 1.8

Гидравлическая крупность частиц грунта при свободном падении в спокойной воде

Диаметр частиц, мм ωсв, см/с, при температуре воды
5°С 10°С 15°С 20°С
0,001 0,000126 0,00049 0,00005 0,00006
0,01 0,0043 0,0049 0,0056 0,0064
0,05 0,106 0,124 0,148 0,16
0,10 0,386 0,46 0,535 0,61
0,125 0,55 0,66 0,78 0,89
0,25 1,84 2,05 2,26 2,46
0,50 5,34 5,67 6,0 6,33
0,75 8,81 9,23 9,65 10,07
1,0 11,20 11,68 12,17 12,66
1,5 15,15 15,65 16,15 16,65
2,0 18,25 18,75 19,25 19,75
2,5 20,42 20,92 21,42 21,92
3,0 22,25 22,75 23,25 23,75
3,5 24,53
4,0 26,85
5,0 30,00
6,0 32,8
7,0 35,5
8,0 38,0
9,0 40,3
10,0 42,5
15,0 52,0
20,0 60,2
25,0 67,2
30,0 73,6

В таблице приведены данные для грунтов плотностью частиц ρS = 2,65 т/м3.

Влажность грунта W, % — это отношение массы воды в порах грунта к массе сухого грунта mc в данном объеме, выражаемое в процентах или долях единицы:

Влажность грунта формула

где mвл, mc — масса грунта соответственно до и после высушивания.

Влажность грунта влияет на связь (сцепление) между частицами и состояние грунта, особенно на его консистенцию.

Объемная влажность:

Wоб = Wρd.

Абсолютная влажность (полная влагоемкость) Wполн, % представляет заполнение всех пор водой:

Абсолютная влажность (полная влагоемкость) формула

где ρв — плотность воды.

Коэффициент (индекс) водонасыщенности Kw — это отношение фактической влажности W к абсолютной Wполн:

Кw W/Wполн.

Коэффициент водонасыщенности Kw (табл. 1.9, 1.10) характеризует степень насыщения грунта водой (в долях единицы).

Таблица 1.9

Коэффициент водонасыщенности

Песок Kw, доли единицы
Сухой (маловлажный) < 0,5
Влажный 0,5–0,8
Водонасыщенный 0,8–1,0

Таблица 1.10

Предельное значение влажности грунтов природного сложения

Грунт W, %
Песок 1–10
Супесь 10–15
Суглинок 15–25
Глина 25–35

 

Набухание — это способность грунта при увеличении его влажности увеличиваться в объеме.

Процесс, обратный набуханию, происходящий при высыхании грунта, называют его усадкой.

Коэффициент набухания Кн — это отношение объема грунта после насыщения его водой к объему его в естественном состоянии:

Кн Vн/Vест.

Коэффициент набухания Кн учитывают при определении объема гидроотвала (табл. 1.11).

Таблица 1.11

Коэффициент набухания некоторых грунтов

Грунт Кн, доли единицы
Глины:

тяжелые вязкие

обычные пластичные

 

2–1,5

1,5

Суглинки:

тяжелые

средние

легкие

 

1,5–1,45

1,45–1,2

1,2

Супеси 1,15–1,05
Пески:

пылеватые

глинистые

крупнозернистые

 

1,1

1,05

1,0

 

Коэффициент разрыхления грунта Кр — это отношение объема разрыхленного грунта к объему грунта в природном состоянии (табл. 1.12).

Таблица 1.12

Коэффициент разрыхления грунтов

Грунт Кр, доли единицы
Чистый песок и гравий 1,05–1,2
Суглинистый и супесчаный грунт 1,2–1,25
Глина и плотная глина с галькой 1,3–1,4
Щебенистый грунт 1,4–1,45

 

Угол естественного откоса φе — это наибольший (предельный) угол наклона откоса уступа к горизонту с сохранением устойчивого состояния (когда грунт не осыпается и не оплывает). Этот угол зависит от характера и влажности грунтов (табл. 1.13).

Таблица 1.13

Угол естественного откоса

Грунт Угол естественного откоса φе в градусах для грунта
сухого влажного мокрого
Растительный 40 35 25
Песок крупный 30–35 32–40 25–27
Песок средний 28–30 35 25
Песок мелкий 25 30–35 15–20
Суглинок 40–50 35–40 25–30
Глина жирная 40–45 35 15–20
Гравий 35–40 35 25–30
Торф (без корней) 40 25 15

 

Сцепление С — свойство грунта, характеризующее его связность. Чем больше сцепление грунта, тем грунт прочнее и тем больший расход воды требуется на его размыв (табл. 1.14).

 

Таблица 1.14

Удельное сцепление частиц грунта и расход воды на его размыв

Грунт Сцепление, C МПа Удельный расход воды q, м3, на размыв 1 м3 грунта
Песок пылеватый 0,004–0,008 4–6
Супесь 0,007–0,042 4–10
Суглинок 0,019–0,068 10–16
Глина 0,037–0,082 12–18
Жирная глина 0,047–0,094 14–20

Угол внутреннего трения φ характеризует сопротивление грунта сдвигу.

Для сыпучих рыхлых грунтов угол внутреннего трения приближается к углу естественного откоса (табл. 1.15)

Таблица 1.15

Угол внутреннего трения φ для несвязанных грунтов

Грунт Угол внутреннего трения φ, в градусах для грунтов
сухого влажного водонасыщенного
Песок

крупный и гравелистый

средней крупности

мелкий

пылеватый

 

33–37

30–33

27–33

27–33

 

30–35

27–30

25–30

22–25

 

30–35

25–28

22–28

18–22

Гравий и галька 40 40 40
Супесь 22–27 20–25 15–18
Торф 25 20 15
Растительный грунт 40 35 25

 

Водопроницаемость — это способность грунтов пропускать воду под действием силы тяжести или гидростатического напора.

Водопроницаемость оценивается коэффициентом фильтрации Кф, который зависит от состава, степени уплотненности, структуры и сложения грунтов. Обычно коэффициент фильтрации Кф выражается в единицах скорости, м/сут, м/с (табл. 1.16).

Таблица 1.16

Коэффициент фильтрации для некоторых видов грунтов

Грунт Коэффициент фильтрации Кф, м/сут
Песок:

пылеватый, фракции 0,01–0,05 мм

мелкозернистый, фракции 0,1–0,25 мм

среднезернистый, фракции 0,25–0,5 мм

крупнозернистый, фракции 0,5–1,0 мм

 

0,5–1,0

10–15

20–25

60–75

Супесь:

плотная

рыхлая

 

0,1–0,01

1,0–0,1

Суглинок:

тяжелый

легкий и средний

 

0,05–0,01

0,04–0,005

Глина менее 0,001
Галечник:

с песком

чистый

 

20–100

до 200

Гравий:

с песком

чистый

 

75–150

100–200

 

Абразивность грунта — это способность разрабатываемых грунтов истирать (изнашивать) рабочие органы и оборудование гидромеханизации.

Абразивные свойства грунта зависят от гранулометрического состава, степени окатанности и твердости зерен. Абразивность грунта в зависимости от степени окатанности и твердости его частиц учитывается коэффициентом абразивности Ка по шкале, разработанной Б.М. Шкун­ди­ным,  которая  составлена  на основании  твердости минералов по Моосу (табл. 1.17) [9].

Таблица 1.17

Коэффициенты абразивности грунтов (по Б.М. Шкундину)

Грунт Степень окатанности зерен грунта Ка при средней твердости по Моосу
5 6 7
Песок мелкий и средней крупности >8

8–6,5

<6,5

0,2

0,3

0,4

0,5

0,8

1,3

0,6

0,9

1,5

Песок разнозернистый крупный и гравелистый >8

8–6,5

<6,5

0,3

0,4

0,7

0,9

1,3

2,2

1,0

1,5

2,5

Песчано-гравийный грунт >8

8–6,5

<6,5

0,9

1,3

2,2

2,7

4,0

6,5

3,0

4,5

7,5

Если известна интенсивность износа трубопроводов, рабочих органов и другого оборудования гидромеханизации при некоторых средних значениях условий эксплуатации, то, пользуясь этой таблицей, можно прогнозировать износ и в других условиях.

  • Разделы

  • Введение
  • Раздел 1. Основные свойства грунтов в технологии намывных работ
  • Раздел 2. Землесосные снаряды для разработки подводных грунтов
  • Раздел 3. Гидравлическая транспортировка разрабатываемого грунта
  • Раздел 4. Намыв строительных площадок и территорий
  • Раздел 5. Намыв земляных сооружений
  • Раздел 6. Намыв пляжей
  • Раздел 7. Охрана окружающей среды при выполнении гидромеханизированных работ
  • Раздел 8. Техника безопасности в гидромеханизации
  • Список литературы